Development of Fullerenes and Their Derivatives

Fullerenes and their derivatives have captured the attention of scientists and researchers since their discovery in 1985. These unique carbon molecules have a cage-like structure that has opened up a wide range of potential applications in various fields, including molecular electronics, biomedicine, and nanotechnology. In this book chapter, we will delve into the various physical and electronic properties of fullerenes and their derivatives, along with the latest developments in their applications.

One of the most significant properties of fullerenes is their high superconductivity, which makes them ideal for use in molecular electronics. They also exhibit quasi-one-dimensional behavior, which has important implications for their use in electronic devices. Fullerenes are also known for their five-fold local symmetry, which makes them ideal for derivatization and has opened up a wide range of potential applications in biomedicine and nanotechnology.

The cage-like structure of fullerenes also has immense potential for use as therapeutic agents. Fullerenes are small in size and highly stable, making them ideal for drug delivery and other medical applications. Additionally, fullerenes have antioxidant properties that make them useful in the treatment of a variety of diseases, including cancer and neurodegenerative disorders.

In recent years, there have been many exciting developments in the field of fullerenes and their derivatives. Researchers have discovered new and innovative ways to synthesize fullerenes and manipulate their properties to create novel materials with unique properties. There has also been significant progress in the development of fullerene-based compounds for use in various applications, including electronics, energy storage, and medicine.

Overall, fullerenes and their derivatives have enormous potential for use in a wide range of applications. In this book chapter, we will provide a comprehensive overview of the physical and electronic properties of fullerenes and their derivatives, along with the latest developments in their applications. We will also explore the research in nanostructures, especially fullerene-based compounds, and their potential to revolutionize various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

References

  1. Fullerene – Nanomaterials/Alfa Chemistry. In: nanomaterials.alfa-chemistry.com. https://nanomaterials.alfa-chemistry.com/products/fullerene.html. Accessed 7 Dec 2022
  2. Buntar, V., Weber, H.W.: Magnetic properties of fullerene superconductors. Supercond. Sci. Technol. 9, 599–615 (1996) ArticleCASGoogle Scholar
  3. Thakur, A., Bharti, R., Sharma, R.: Carbon nanotubes: types, synthesis, cytotoxicity and applications in biomedical. Mater. Today: Proc. 50, 2256–2268 (2021) Google Scholar
  4. Boo, W.O.J.: An introduction to fullerene structures. Geometry and symmetry. J. Chem. Educ. 69, 605 (1992) ArticleCASGoogle Scholar
  5. Yadav, B.C., Kumar, R.: Structure, properties and applications of fullerenes. Int. J. Nanotechn. Appl. 2, 15–24 (2008) Google Scholar
  6. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C60: a new form of carbon. Nature. 347, 354–358 (1990) ArticleGoogle Scholar
  7. Taylor, R., Hare, J.P., Abdul-Sada, A.K., Kroto, H.W.: Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J. Chem. Soc. Chem. Commun. 1423 (1990) Google Scholar
  8. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991) ArticleCASGoogle Scholar
  9. Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature. 359, 707–709 (1992) ArticleCASGoogle Scholar
  10. Manolopoulos, D.E., Fowler, P.W., Taylor, R., Kroto, H.W., Walton, D.R.M.: Faraday communications. An end to the search for the ground state of C84? J. Chem. Soc. Faraday Trans. 88, 3117 (1992) ArticleCASGoogle Scholar
  11. Tang, A.C., Huang, F.Q.: Electronic structures and stability rules of tetrahedral fullerenes. Chem. Phys. Lett. 258, 562–573 (1996) ArticleCASGoogle Scholar
  12. Wang, Y., Holden, J.M., Rao, A.M., Lee, W.-T., Bi, X.X., Ren, S.L., Lehman, G.W., Hager, G.T., Eklund, P.C.: Interband dielectric function of C60 and M6C60(M=K,Rb,Cs). Phys. Rev. B. 45, 14396–14399 (1992) ArticleCASGoogle Scholar
  13. Ren, S.L., Wang, Y., Rao, A.M., et al.: Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films. Appl. Phys. Lett. 59, 2678–2680 (1991) ArticleCASGoogle Scholar
  14. Yu, R.C., Tea, N., Salamon, M.B., Lorents, D., Malhotra, R.: Thermal conductivity of single crystal C60. Phys. Rev. Lett. 68, 2050–2053 (1992) ArticleCASGoogle Scholar
  15. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Fullerenes. J. Mater. Res. 8, 2054–2097 (1993) ArticleCASGoogle Scholar
  16. Grivei, E., Nysten, B., Cassart, M., Demain, A., Issi, J.-P.: Specific heat of fullerenes extract. Solid State Commun. 85, 73–75 (1993) ArticleGoogle Scholar
  17. Grivei, E., Nysten, B., Cassart, M., Issi, J.-P., Fabre, C., Rassat, A.: Thermal properties of C70. Phys. Rev. B. 47, 1705–1707 (1993) ArticleCASGoogle Scholar
  18. Shi, X.D., Kortan, A.R., Williams, J.M., Kini, A.M., Savall, B.M., Chaikin, P.M.: Sound velocity and attenuation in single-crystal C60. Phys. Rev. Lett. 68, 827–830 (1992) ArticleCASGoogle Scholar
  19. Dresselhaus, G.F., Dresselhaus, M.S., Mavroides, J.G.: Spin-orbit interaction in graphite. Carbon. 4, 433–440 (1966) ArticleCASGoogle Scholar
  20. Rao, A.M., Zhou, P., Wang, K.-A., et al.: Photoinduced polymerization of solid C60 films. Science. 259, 955–957 (1993) ArticleCASGoogle Scholar
  21. Heiney, P.A., Vaughan, G.B.M., Fischer, J.E., et al.: Discontinuous volume change at the orientational-ordering transition in solid C60. Phys. Rev. B. 45, 4544–4547 (1992) ArticleCASGoogle Scholar
  22. de Vries, J., Steger, H., Kamke, B., Menzel, C., Weisser, B., Kamke, W., Hertel, I.V.: Single-photon ionization of C60- and C70-fullerene with synchrotron radiation: determination of the ionization potential of C60. Chem. Phys. Lett. 188, 159–162 (1992) ArticleGoogle Scholar
  23. Steger, H., de Vries, J., Kamke, B., Kamke, W., Drewello, T.: Direct double ionization of C60 and C70 fullerenes using synchrotron radiation. Chem. Phys. Lett. 194, 452–456 (1992) ArticleCASGoogle Scholar
  24. Wang, L.S., Conceicao, J., Jin, C., Smalley, R.E.: Sulfonylureas and activated by diazoxide. The data indicate that these pancreatic P cell. Chem. Phys. Lett. 182, 5 Google Scholar
  25. Saito, S., Oshiyama, A.: Electronic and geometric structures of C70. Phys. Rev. B. 44, 11532–11535 (1991) ArticleCASGoogle Scholar
  26. Fischer, J.E., Heiney, P.A., Smith, A.B.: Solid-state chemistry of fullerene-based materials. Acc. Chem. Res. 25, 112–118 (1992) ArticleCASGoogle Scholar
  27. Woo, S.J., Lee, S.H., Kim, E., Lee, K.H., Lee, Y.H., Hwang, S.Y., Jeon, I.C.: Bulk modulus of the C60 molecule via the tight binding method. Phys. Lett. A. 162, 501–505 (1992) ArticleCASGoogle Scholar
  28. Fischer, J.E., Heiney, P.A., McGhie, A.R., Romanow, W.J., Denenstein, A.M., McCauley, J.P., Smith, A.B.: Compressibility of solid C60. Science. 252, 1288–1290 (1991) ArticleCASGoogle Scholar
  29. Stephens, P.W., Mihaly, L., Lee, P.L., Whetten, R.L., Huang, S.-M., Kaner, R., Deiderich, F., Holczer, K.: Structure of single-phase superconducting K3C60. Nature. 351, 632–634 (1991) ArticleCASGoogle Scholar
  30. Kortan, A.R., Kopylov, N., Glarum, S., Gyorgy, E.M., Ramirez, A.P., Fleming, R.M., Thiel, F.A., Haddon, R.C.: Superconductivity at 8.4 K in calcium-doped C60. Nature. 355, 529–532 (1992) ArticleCASGoogle Scholar
  31. David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M.: Crystal structure and bonding of ordered C60. Nature. 353, 147–149 (1991) ArticleCASGoogle Scholar
  32. Murphy, D.W., Rosseinsky, M.J., Fleming, R.M., Tycko, R., Ramirez, A.P., Haddon, R.C., Siegrist, T., Dabbagh, G., Tully, J.C., Walstedt, R.E.: Synthesis and characterization of alkali metal fullerides: AxC60. J. Phys. Chem. Solids. 53, 1321–1332 (1992) ArticleCASGoogle Scholar
  33. Fleming, R.M., Rosseinsky, M.J., Ramirez, A.P., et al.: Preparation and structure of the alkali-metal fulleride A4C60. Nature. 352, 701–703 (1991) ArticleCASGoogle Scholar
  34. Suematsu, H., Murakami, Y., Arai, T., Kikuchi, K., Achiba, Y., Ikemoto, I.: Magnetic and electronic properties of pure and alkali-doped C60 crystals. Mater. Sci. Eng. B. 19, 141–145 (1993) ArticleGoogle Scholar
  35. Allemand, P.-M., Khemani, K.C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Grüner, G., Thompson, J.D.: Organic molecular soft ferromagnetism in a fullerene C60. Science. 253, 301–302 (1991) ArticleCASGoogle Scholar
  36. Koike, Y., Suematsu, H., Higuchi, K., Tanuma, S.: Superconductivity in graphite-potassium intercalation compound C8K. Solid State Commun. 27, 623–627 (1978) ArticleCASGoogle Scholar
  37. Hannay, N.B., Geballe, T.H., Matthias, B.T., Andres, K., Schmidt, P., Mac Nair, D.: Superconductivity in graphitic compounds. Phys. Rev. Lett. 14, 225–226 (1965) ArticleCASGoogle Scholar
  38. Chaiken, A., Dresselhaus, M.S., Orlando, T.P., Dresselhaus, G., Tedrow, P.M., Neumann, D.A., Kamitakahara, W.A.: Anisotropic superconductivity in C4KHg. Phys. Rev. B. 41, 71–81 (1990) ArticleCASGoogle Scholar
  39. Belash, I.T., Bronnikov, A.D., Zharikov, O.V., Palnichenko, A.V.: Effect of the metal concentration on the superconducting properties of lithium-, sodium- and potassium-containing graphite intercalation compounds. Synth. Met. 36, 283–302 (1990) ArticleCASGoogle Scholar
  40. Haddon, R.C., Hebard, A.F., Rosseinsky, M.J., et al.: Conducting films of C60 and C70 by alkali-metal doping. Nature. 350, 320–322 (1991) ArticleCASGoogle Scholar
  41. Holczer, K., Klein, O., Huang, S., Kaner, R.B., Fu, K., Whetten, R.L., Diederich, F.: Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science. 252, 1154–1157 (1991) ArticleCASGoogle Scholar
  42. Jena, P., Khanna, S.N., Rao, B.K.N.: Physics and Chemistry of Finite Systems: from Clusters to Crystals. Springer (2014) Google Scholar
  43. Tanigaki, K., Ebbesen, T.W., Saito, S., Mizuki, J., Tsai, J.S., Kubo, Y., Kuroshima, S.: Superconductivity at 33 K in CsxRbyC60. Nature. 352, 222–223 (1991) ArticleCASGoogle Scholar
  44. Xiao, Y., Zhu, S.-E., Liu, D.-J., Suzuki, M., Lu, X., Wang, G.-W.: Regioselective electrosynthesis of rare 1,2,3,16-functionalized [60]fullerene derivatives. Angew. Chem. 126, 3050–3054 (2014) ArticleGoogle Scholar
  45. Diederich, F., Ettl, R., Rubin, Y., et al.: The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science. 252, 548–551 (1991) ArticleCASGoogle Scholar
  46. Wood, J.M., Kahr, B., Hoke, S.H., Dejarme, L., Cooks, R.G., Ben-Amotz, D.: Oxygen and methylene adducts of C60 and C70. J. Am. Chem. Soc. 113, 5907–5908 (1991) ArticleCASGoogle Scholar
  47. Kalsbeck, W.A., Thorp, H.H.: Electrochemical reduction of fullerenes in the presence of O2 and H2O: polyoxygen adducts and fragmentation of the C60 framework. J. Electroanal. Chem. Interfacial Electrochem. 314, 363–370 (1991) ArticleCASGoogle Scholar
  48. Creegan, K.M., Robbins, J.L., Robbins, W.K., Millar, J.M., Sherwood, R.D., Tindall, P.J., Cox, D.M., McCauley, J.P., Jones, D.R.: Synthesis and characterization of C60O, the first fullerene epoxide. J. Am. Chem. Soc. 114, 1103–1105 (1992) ArticleCASGoogle Scholar
  49. Taylor, R., Parsons, J.P., Avent, A.G., Rannard, S.P., Dennis, T.J., Hare, J.P., Kroto, H.W., DRM, W.: Degradation of C60 by light. Nature. 351, 277–277 (1991) ArticleCASGoogle Scholar
  50. Vassallo, A.M., Pang, L.S.K., Cole-Clarke, P.A., Wilson, M.A.: Emission FTIR study of C60 thermal stability and oxidation. J. Am. Chem. Soc. 113, 7820–7821 (1991) ArticleCASGoogle Scholar
  51. Hawkins, J.M., Meyer, A., Nambu, M.: Asymmetric bisosmylation of fullerene C60: novel chiral.pi.-systems. J. Am. Chem. Soc. 115, 9844–9845 (1993) ArticleCASGoogle Scholar
  52. Hawkins, J.M., Meyer, A., Lewis, T.A., Bunz, U., Nunlist, R., Ball, G.E., Ebbesen, T.W., Tanigaki, K.: Regiochemistry of the bisosmylation of fullerene C60: ortho, meta, and para in three dimensions. J. Am. Chem. Soc. 114, 7954–7955 (1992) ArticleCASGoogle Scholar
  53. Hawkins, J.M.: Osmylation of C60: proof and characterization of the soccer-ball framework. Acc. Chem. Res. 25, 150–156 (1992) ArticleCASGoogle Scholar
  54. Hawkins, J.M., Meyer, A., Lewis, T.A., Loren, S., Hollander, F.J.: Crystal structure of osmylated C60: confirmation of the soccer ball framework. Science. 252, 312–313 (1991) ArticleCASGoogle Scholar
  55. Hawkins, J.M., Lewis, T.A., Loren, S.D., Meyer, A., Heath, J.R., Shibato, Y., Saykally, R.J.: Organic chemistry of C60 (buckminsterfullerene): chromatography and osmylation. J. Org. Chem. 55, 6250–6252 (1990) ArticleCASGoogle Scholar
  56. Olah, G.A., Bucsi, I., Lambert, C., Aniszfeld, R., Trivedi, N.J., Sensharma, D.K., Prakash, G.K.S.: Chlorination and bromination of fullerenes. Nucleophilic methoxylation of polychlorofullerenes and their aluminum trichloride catalyzed Friedel-Crafts reaction with aromatics to polyarylfullerenes. J. Am. Chem. Soc. 113, 9385–9387 (1991) ArticleCASGoogle Scholar
  57. Tebbe, F.N., Becker, J.Y., Chase, D.B., Firment, L.E., Holler, E.R., Malone, B.S., Krusic, P.J., Wasserman, E.: Multiple, reversible chlorination of C60. J. Am. Chem. Soc. 113, 9900–9901 (1991) ArticleCASGoogle Scholar
  58. Birkett, P.R., Avent, A.G., Darwish, A.D., Kroto, H.W., Taylor, R., Walton, D.R.M.: Preparation and 13C NMR spectroscopic characterisation of C60Cl6. J. Chem. Soc. Chem. Commun., 1230–1232 (1993) Google Scholar
  59. Tebbe, F.N., Harlow, R.L., Chase, D.B., Thorn, D.L., Campbell, G.C., Calabrese, J.C., Herron, N., Young, R.J., Wasserman, E.: Synthesis and single-crystal X-ray structure of a highly symmetrical C 60 derivative, C 60 Br 24. Science. 256, 822–825 (1992) ArticleCASGoogle Scholar
  60. Birkett, P.R., Hitchcock, P.B., Kroto, H.W., Taylor, R., Walton, D.R.M.: Preparation and characterization of C60Br6 and C60Br8. Nature. 357, 479–481 (1992) ArticleCASGoogle Scholar
  61. Fagan, P.J., Calabrese, J.C., Malone, B.: The chemical nature of buckminsterfullerene (C 60) and the characterization of a platinum derivative. Science. 252, 1160–1161 (1991) ArticleCASGoogle Scholar
  62. Fagan, P.J., Calabrese, J.C., Malone, B.: Metal complexes of buckminsterfullerene (C60). Acc. Chem. Res. 25, 134–142 (1992) ArticleCASGoogle Scholar
  63. Balch, A.L., Catalano, V.J., Lee, J.W.: Accumulating evidence for the selective reactivity of the 6-6 ring fusion of fullerene, C60. Preparation and structure of (.eta.2-C60)Ir(CO)Cl(PPh3)2.cntdot.5C6H6. Inorg. Chem. 30, 3980–3981 (1991) ArticleCASGoogle Scholar
  64. Balch, A.L., Catalano, V.J., Lee, J.W., Olmstead, M.M.: Supramolecular aggregation of an (.eta.2-C60) iridium complex involving phenyl chelation of the fullerene. J. Am. Chem. Soc. 114, 5455–5457 (1992) ArticleCASGoogle Scholar
  65. Balch, A.L., Lee, J.W., Noll, B.C., Olmstead, M.M.: A double addition product of C60: C602. Individual crystallization of two conformational isomers. J. Am. Chem. Soc. 114, 10984–10985 (1992) ArticleCASGoogle Scholar
  66. Attalla, M.I., Vassallo, A.M., Tattam, B.N., Hanna, J.V.: Preparation of hydrofullerenes by hydrogen radical induced hydrogenation. J. Phys. Chem. 97, 6329–6331 (1993) ArticleCASGoogle Scholar
  67. Drelinkiewicz, A., Byszewski, P., Bielanski, A.: Catalytic hydrogenation of C60 fullerene. React. Kinet. Catal. Lett. 59, 19–27 (1996) ArticleCASGoogle Scholar
  68. Shigematsu, K., Abe, K., Mitani, M., Tanaka, K.: Catalytic hydrogenation of fullerenes in the presence of metal catalysts in toluene solution. Fuller. Sci. Technol. 1, 309–318 (1993) ArticleCASGoogle Scholar
  69. Rüchardt, C., Gerst, M., Ebenhoch, J., Beckhaus, H.-D., Campbell, E.E.B., Tellgmann, R., Schwarz, H., Weiske, T., Pitter, S.: Transfer hydrogenation and deuteration of buckminsterfullerene C60 by 9,10-dihydroanthracene and 9,9′,10,10′[D4]dihydroanthracene. Angew. Chem. Int. Ed. Engl. 32, 584–586 (1993) ArticleGoogle Scholar
  70. Banks, M.R., Dale, M.J., Gosney, I., et al.: Birch reduction of C60—a new appraisal. J. Chem. Soc. Chem. Commun., 1149–1152 (1993) Google Scholar
  71. Haufler, R.E., Conceicao, J., Chibante, L.P.F., Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O’Brien, S.C., Pan, C., et al.: Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 94, 8634–8636 (1990) ArticleCASGoogle Scholar
  72. Guarr, T.F., Meier, M.S., Vance, V.K., Clayton, M.: Electrochemistry of the C60H2 fullerene. J. Am. Chem. Soc. 115, 9862–9863 (1993) ArticleCASGoogle Scholar
  73. Henderson, C.C., Cahill, P.A.: C 60 H 2: synthesis of the simplest C60 hydrocarbon derivative. Science. 259, 1885–1887 (1993) ArticleCASGoogle Scholar
  74. Ballenweg, S., Gleiter, R., Krätschmer, W.: Hydrogenation of buckminsterfullerene C60 via Hydrozirconation: a new way to organofullerenes. Tetrahedron Lett. 34, 3737–3740 (1993) ArticleCASGoogle Scholar
  75. Henderson, C.C., Rohlfing, C.M., Assink, R.A., Cahill, P.A.: C60H4: Kinetik und Thermodynamik der mehrfachen Addition an C60. Angew. Chem. 106, 803–805 (1994) ArticleCASGoogle Scholar
  76. Hammond GS, Kuck VJ, American Chemical Society. Fullerenes: Synthesis Properties and Chemistry of Large Carbon Clusters: Developed from a Symposium Sponsored by the Divisions of Inorganic Chemistry Organic Chemistry Petroleum Chemistry Inc. Polymer Chemistry Inc. and Polymeric Materials: Science and Engineering at the 201st National Meeting of the American Chemical Society Atlanta Georgia April 14–19 1991. Washington DC: American Chemical Society; 1992 Google Scholar
  77. Krusic, P.J., Wasserman, E., Keizer, P.N., Morton, J.R., Preston, K.F.: Radical reactions of C60. Science. 254, 1183–1185 (1991) ArticleCASGoogle Scholar
  78. Hirsch, A., Grösser, T., Skiebe, A., Soi, A.: Synthesis of isomerically pure organodihydrofullerenes. Chem. Ber. 126, 1061–1067 (1993) ArticleCASGoogle Scholar
  79. Anderson, H.L., Faust, R., Rubin, Y., Diederich, F.: Fulleren-Acetylen-Hybride: auf dem Weg zu neuen, synthetischen molekularen Kohlenstoffallotropen. Angew. Chem. 106, 1427–1429 (1994) ArticleCASGoogle Scholar
  80. Bingel, C.: Cyclopropanierung von Fullerenen. Chem. Ber. 126, 1957–1959 (1993) ArticleCASGoogle Scholar
  81. Nagashima, H., Terasaki, H., Kimura, E., Nakajima, K., Itoh, K.: Silylmethylations of C60 with Grignard reagents: selective synthesis of HC60CH2SiMe2Y and C60(CH2SiMe2Y)2 with selection of solvents. J. Org. Chem. 59, 1246–1248 (1994) ArticleCASGoogle Scholar
  82. Fagan, P.J., Krusic, P.J., Evans, D.H., Lerke, S.A., Johnston, E.: Synthesis, chemistry, and properties of a monoalkylated buckminsterfullerene derivative, tert-BuC60 anion. J. Am. Chem. Soc. 114, 9697–9699 (1992) ArticleCASGoogle Scholar
  83. Yamago, S., Yanagawa, M., Nakamura, E.: Tertiary phosphines and P-chiral phosphinites bearing a fullerene substituent. J. Chem. Soc. Chem. Commun, 2093–2094 (1994) Google Scholar
  84. Kampe, K.-D., Egger, N.: Reaktionen von Diaminen mit Fulleren C60. Liebigs Ann. 1995, 115–124 (1995) ArticleGoogle Scholar
  85. Kampe, K.-D., Egger, N., Vogel, M.: Diamino- und Tetraaminoderivate von Buckminsterfulleren C60. Angew. Chem. 105, 1203–1205 (1993) ArticleCASGoogle Scholar
  86. Hirsch, A.: Addition reactions of buckminsterfullerene (C60). Synthesis. 1995, 895–913 (1995) ArticleGoogle Scholar
  87. Diederich, F., Isaacs, L., Philp, D.: Syntheses, structures, and properties of methanofullerenes. Chem. Soc. Rev. 23, 243 (1994) ArticleCASGoogle Scholar
  88. Tokuyama, H., Nakamura, M., Nakamura, E.: [1 + 2] and [3 + 2] cycloaddition reactions of vinylcarbenes with C60. Tetrahedron Lett. 34, 7429–7432 (1993) ArticleCASGoogle Scholar
  89. Vasella, A., Uhlmann, P., Waldraff, C.A.A., Diederich, F., Thilgen, C.: Fullerenzucker: Herstellung enantiomerenreiner, spiroverknüpfter C-Glycoside von C60. Angew. Chem. 104, 1383–1385 (1992) ArticleCASGoogle Scholar
  90. An, Y.-Z., Rubin, Y., Schaller, C., McElvany, S.W.: Synthesis and characterization of diethynylmethanobuckminsterfullerene, a building block for macrocyclic and polymeric carbon allotropes. J. Org. Chem. 59, 2927–2929 (1994) ArticleCASGoogle Scholar
  91. Isaacs, L., Diederich, F.: Structures and chemistry of methanofullerenes: a versatile route into N-[(methanofullerene)carbonyl]-substituted amino acids. Helv. Chim. Acta. 76, 2454–2464 (1993) ArticleCASGoogle Scholar
  92. Tsuda, M., Ishida, T., Nogami, T., Kurono, S., Ohashi, M.: C61Cl2. Synthesis and characterization of dichlorocarbene adducts of C60. Tetrahedron Lett. 34, 6911–6912 (1993) ArticleCASGoogle Scholar
  93. Merlic, C.A., Bendorf, H.D.: Cyclopropanation of C60 via a Fischer carbene complex. Tetrahedron Lett. 35, 9529–9532 (1994) ArticleCASGoogle Scholar
  94. Akasaka, T., Ando, W., Kobayashi, K., Nagase, S.: Reaction of C60 with silylene, the first fullerene silirane derivative. J. Am. Chem. Soc. 115, 1605–1606 (1993) ArticleCASGoogle Scholar
  95. Banks, M.R., Cadogan, J.I.G., Gosney, I., Hodgson, P.K.G., Langridge-Smith, P.R.R., Rankin, D.W.H.: Bis-functionalisation of C60 via thermal rearrangement of an isolable fulleroaziridine bearing a “solubilising” supermesityl ester moiety. J. Chem. Soc. Chem. Commun., 1365–1366 (1994) Google Scholar
  96. Hoke, S.H., Molstad, J., Dilettato, D., Jay, M.J., Carlson, D., Kahr, B., Cooks, R.G.: Reaction of fullerenes and benzyne. J. Org. Chem. 57, 5069–5071 (1992) ArticleCASGoogle Scholar
  97. Prato, M., Maggini, M., Scorrano, G., Lucchini, V.: Addition of quadricyclane to C60: easy access to fullerene derivatives bearing a reactive double bond in the side chain. J. Org. Chem. 58, 3613–3615 (1993) ArticleCASGoogle Scholar
  98. Skiebe, A., Hirsch, A.: A facile method for the synthesis of amino acid and amido derivatives of C60. J. Chem. Soc. Chem. Commun., 335–336 (1994) Google Scholar
  99. Isaacs, L., Wehrsig, A., Diederich, F.: Improved purification of C60 and formation of σ- and π-homoaromatic methano-bridged fullerenes by reaction with alkyl diazoacetates. Helv. Chim. Acta. 76, 1231–1250 (1993) ArticleCASGoogle Scholar
  100. Prato, M., Bianco, A., Maggini, M., Scorrano, G., Toniolo, C., Wudl, F.: Synthesis and characterization of the first fullerene-peptide. J. Org. Chem. 58, 5578–5580 (1993) ArticleCASGoogle Scholar
  101. Shi, S., Khemani, K.C., Li, Q., Wudl, F.: A polyester and polyurethane of diphenyl C61: retention of fulleroid properties in a polymer. J. Am. Chem. Soc. 114, 10656–10657 (1992) ArticleCASGoogle Scholar
  102. Suzuki, T., Li, Q., Khemani, K.C., Wudl, F., Almarsson, Ö.: Systematic inflation of buckminsterfillerene C 60: synthesis of diphenyl fulleroids C 61 to C 66. Science. 254, 1186–1188 (1991) ArticleCASGoogle Scholar
  103. Suzuki, T., Li, Q., Khemani, K.C., Wudl, F.: Dihydrofulleroid H3C61: synthesis and properties of the parent fulleroid. J. Am. Chem. Soc. 114, 7301–7302 (1992) ArticleCASGoogle Scholar
  104. Bidell, W., Douthwaite, R.E., Green, M.L.H., Stephens, A.H.H., Turner, J.F.C.: A Diels–Alder adduct of C60 containing hydroxyquinone functionalities. J. Chem. Soc. Chem. Commun., 1641–1642 (1994) Google Scholar
  105. Zhang, X., Foote, C.S.: Reaction of C60 with Benzocyclobutenol: expeditious route to fullerene adducts. J. Org. Chem. 59, 5235–5238 (1994) ArticleCASGoogle Scholar
  106. Iyoda, M., Sultana, F., Sasaki, S., Yoshida, M.: Synthesis and properties of a novel redox system containing fullerene and P-benzoquinone. J. Chem. Soc. Chem. Comm., 1929–1930 (1994) Google Scholar
  107. Gügel, A., Kraus, A., Spickermann, J., Belik, P., Müllen, K.: Buckminsterfulleren-Addukte vonortho-Chinodimethanen. Angew. Chem. 106, 601–603 (1994) ArticleGoogle Scholar
  108. Diederich, F., Jonas, U., Gramlich, V., Herrmann, A., Ringsdorf, H., Thilgen, C.: Synthesis of a fullerene derivative of benzo[18]crown-6 by Diels-Alder reaction: complexation ability, amphiphilic properties, and X-ray crystal structure of a dimethoxy-1,9-(methano[1,2]benzenomethano)fullerene[60] benzene clathrate. Helv. Chim. Acta. 76, 2445–2453 (1993) ArticleCASGoogle Scholar
  109. Belik, P., Gügel, A., Spickermann, J., Müllen, K.: Umsetzung von Buckminsterfulleren C60 mitortho-Chinodimethan: ein neuer Zugang zu stabilen C60-Derivaten. Angew. Chem. 105, 95–97 (1993) ArticleCASGoogle Scholar
  110. Khan, S.I., Oliver, A.M., Paddon-Row, M.N., Rubin, Y.: Synthesis of a rigid “ball-and-chain” donor-acceptor system through Diels-Alder functionalization of buckminsterfullerene (C60). J. Am. Chem. Soc. 115, 4919–4920 (1993) ArticleCASGoogle Scholar
  111. Krätler, B., Puchberger, M.: Über Diels-Alder-Reaktionen des C60-Fullerens Vorläu Fige Mitteilung. Helv. Chim. Acta. 76, 1626–1631 (1993) ArticleGoogle Scholar
  112. Linssen, T.G., Dürr, K., Hanack, M., Hirsch, A.: A green fullerene: synthesis and electrochemistry of a Diels–Alder adduct of [60]fullerene with a phthalocyanine. J. Chem. Soc. Chem. Commun., 103–104 (1995) Google Scholar
  113. An, Y.Z., Anderson, J.L., Rubin, Y.: Synthesis of.ALpha.-amino acid derivatives of C60 from 1,9-(4-hydroxycyclohexano)buckminsterfullerene. J. Org. Chem. 58, 4799–4801 (1993) ArticleCASGoogle Scholar
  114. Rubin, Y., Khan, S., Freedberg, D.I., Yeretzian, C.: Synthesis and x-ray structure of a Diels-Alder adduct of fullerene C60. J. Am. Chem. Soc. 115, 344–345 (1993) ArticleCASGoogle Scholar
  115. Averdung, J., Mattay, J.: Cycloaddition of 1,8-dehydronaphthalene to [60]fullerene in benzene solution. A new functionalization of C60 by in situ generated 6b,10a-dihydrofluoranthene 1–3. Tetrahedron Lett. 35, 6661–6664 (1994) ArticleCASGoogle Scholar
  116. Prato, M., Suzuki, T., Foroudian, H., Li, Q., Khemani, K., Wudl, F., Leonetti, J., Little, R.D., White, T.: [3 + 2] and [4 + 2] Cycloadditions of fullerene C60. J. Am. Chem. Soc. 115, 1594–1595 (1993) ArticleCASGoogle Scholar
  117. Tsuda, M., Ishida, T., Nogami, T., Kurono, S., Ohashi, M.: Isolation and characterization of Diels–Alder adducts of C60 with anthracene and cyclopentadiene. J. Chem. Soc. Chem. Commun., 1296–1298 (1993) Google Scholar
  118. Yadav, J.: Fullerene: properties, synthesis and application. Res. Rev. J. Phys. 6, 1–6 (2017) Google Scholar
  119. Kyesmen, P.I., Onoja, A.D., Amah, A.N.: Fullerenes synthesis using fabricated arc discharge system with relatively large chamber size. IOSR J. Appl. Phys. 7, 77–83 (2015) Google Scholar
  120. Nimibofa, A., Newton, E.A., Cyprain, A.Y., Donbebe, W.: Fullerenes: synthesis and applications. J. Mater. Sci. Res. 7, 22 (2018) Google Scholar
  121. Lu, Z., Raad, R., Safaei, F., Xi, J., Liu, Z., Foroughi, J.: Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00138
  122. Boorum, M.M., Vasil’ev, Y.V., Drewello, T., Scott, L.T.: Groundwork for a rational synthesis of C 60: cyclodehydrogenation of a C 60 H 30 polyarene. Science. 294, 828–831 (2001) ArticleCASGoogle Scholar
  123. Chiang, L.Y., Upasani, R.B., Swirczewski, J.W.: Versatile nitronium chemistry for C60 fullerene functionalization. J. Am. Chem. Soc. 114, 10154–10157 (1992) ArticleCASGoogle Scholar
  124. Maggini, M., Scorrano, G., Prato, M.: Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115, 9798–9799 (1993) ArticleCASGoogle Scholar
  125. Shanbogh, P.P., Sundaram, N.G.: Fullerenes revisited. Resonance. 20, 123–135 (2015) ArticleCASGoogle Scholar
  126. Pellarini, F., Pantarotto, D., Da Ros, T., Giangaspero, A., Tossi, A., Prato, M.: A novel [60]fullerene amino acid for use in solid-phase peptide synthesis. Org. Lett. 3, 1845–1848 (2001) ArticleCASGoogle Scholar
  127. Montellano López, A., Mateo-Alonso, A., Prato, M.: Materials chemistry of fullerene C60 derivatives. J. Mater. Chem. 21, 1305–1318 (2011) ArticleGoogle Scholar
  128. Jia, L., Chen, M., Yang, S.: Functionalization of fullerene materials toward applications in perovskite solar cells. Mater. Chem. Front. 4, 2256–2282 (2020) ArticleCASGoogle Scholar
  129. Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W., Bonn, G.K.: Medicinal applications of fullerenes. Int. J. Nanomedicine. 2, 639–649 (2007) CASGoogle Scholar
  130. Foley, S., Crowley, C., Smaihi, M., Bonfils, C., Erlanger, B.F., Seta, P., Larroque, C.: Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294, 116–119 (2002) ArticleCASGoogle Scholar
  131. Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S., Williams, S.P.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010) ArticleCASGoogle Scholar
  132. Grębowski, J., Kaźmierska, P., Krokosz, A.: Fullerenol-properties and applications in biomedical sciences. Adv. Hyg. Exp. Med. 23(67), 859–872 (2013) Google Scholar
  133. Jović, D.S., Seke, M.N., Djordjevic, A.N., Mrđanović, J.Ž., Aleksić, L.D., Bogdanović, G.M., Pavić, A.B., Plavec, J.: Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC Adv. 6(45), 38563–38578 (2016) ArticleGoogle Scholar
  134. Keshri, S.: Insights into the structural and thermodynamic properties of fullerols [C60 (OH) n, n= 12, 14, 16, 18, 20, 22, 24] in aqueous media. Fluid Phase Equilib. 525, 112805 (2020) ArticleCASGoogle Scholar
  135. Jin, B., Shen, J., Peng, R., Zheng, R., Chu, S.: Efficient cyclopropanation of [60] fullerene starting from bromo-substituted active methylene compounds without using a basic catalyst. Tetrahedron Lett. 55(36), 5007–5010 (2014) ArticleCASGoogle Scholar
  136. Goodarzi, S., Da Ros, T., Conde, J., Sefat, F., Mozafari, M.: Fullerene: biomedical engineers get to revisit an old friend. Mater. Today. 20(8), 460–480 (2017) ArticleCASGoogle Scholar
  137. The first all-carbon solar cell [Internet]. Mater. Today 2020. [cited 2023 Apr 29]. Available from: https://www.materialstoday.com/energy/news/the-first-all-carbon-solar-cell/

Author information

Authors and Affiliations

  1. Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali, Punjab, India Ruchi Bharti, Ajay Thakur, Monika Verma & Renu Sharma
  2. Maharaja Lakshman Sen Memorial College, Sunder Nagar, Himachal Pradesh, India Neha Sen
  1. Ruchi Bharti
You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar You can also search for this author in PubMed Google Scholar

Corresponding author

Editor information

Editors and Affiliations

  1. National Centre for Sensor Research, Dublin City University, Cairo, Egypt Ahmed Barhoum
  2. Chemical Processes and Biomaterials, University of West Bohemia, Pilsen 3, Czech Republic Kalim Deshmukh

Rights and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Cite this entry

Bharti, R., Thakur, A., Verma, M., Sharma, R., Sen, N. (2023). Development of Fullerenes and Their Derivatives. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_4-1

Download citation